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Abstract

In this paper, the elastic strain energy stored in thin plates of a transversely isotropic material is decomposed into
distinct, non-interacting elements. Utilizing the characteristics of the elliptic paraboloid failure surface, which was

previously shown to constitute an ideal criterion for yielding and failure of anisotropic media, and focusing our
attention on transversely isotropic plates, it is proven that the total elastic strain energy density may be divided into
discrete orthogonal parts. Moreover, applying the spectral decomposition principle on the compliance fourth-rank

tensor S of transversely isotropic plates, orthogonal states of stress are obtained, each associated with a speci®c
strain energy component. Both decompositions of the elastic strain energy suggested in this paper are energy
equivalent and advantageous, exhibiting close resemblance with the splitting of the total elastic strain energy in

dilatational and distortional constituents, valid only for isotropic materials. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

There have been a few attempts to prove that the strain energy in anisotropic materials may be split

into two independent components, corresponding to dilatational and distortional types of energy. The

®rst e�ort was unsuccessful (Olszak and Urbanowski, 1956) and led to the conclusion that, in general,

no unique decomposition of the elastic energy is valid, since the anisotropic quantities are not in

proportion to the associated isotropic ones. Therefore, the generalization of even the simplest failure

criteria, such as the Huber±von Mises±Hencky criterion, to anisotropic media was not convincing.
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Afterwards, a yield criterion of quadric form was o�ered for anisotropic bodies exhibiting both elastic
and plastic anisotropy (Olszak and Ostrowska-Maciejewska, 1985), where the elastic anisotropy tensor
had the same deviatoric eigenstates as the plastic one, the ¯ow function remained invariant for a
proportional increase of all normal stress components, but the Bauschinger e�ect was neglected.

It was Rychlewski (1984a), who introduced the notion of energy orthogonal states of stress for any
initially or plastically anisotropic material. A stress state was de®ned to be energy orthogonal to
another, if it did not perform along the deformations caused by the other. Furthermore, a theorem was
proven, namely that a failure condition could be represented by a certain condition upon a linear
superposition of energy orthogonal components of the total elastic strain energy, corresponding to
uniquely determined for the given material paring-wise energy orthogonal, additive components of the
total state of stress. Therefore, each quadratic criterion was shown to have a de®nite energy
interpretation.

Rychlewski (1984b) also established the possibility of spectrally decomposing the elastic sti�ness C
and compliance S fourth-rank tensors. Earlier on, Srinivasan and Nigam (1969) as well as Walpole
(1981, 1984) employed other decompositions on fourth-rank tensors, o�ering insight into the tensor
structure, and facilitating operations between these tensors, such as calculations of inverses and
products. However, important as they were for crystallographic applications, these decompositions were
not of the spectral type, except in the trivial cases of isotropic and cubic symmetry.

The analysis initiated by Rychlewski was, subsequently, advanced (Theocaris and Philippidis, 1990,
1991), and the class of transversely isotropic media was examined speci®cally. Thus, the invariant
parameters of the spectral decomposition of the compliance tensor S were determined, and the elastic
potential of the transversely isotropic medium was granted an explicit decomposition in distinct
elements, indicating the nonexistence of a sole dilatation energy component. Nonetheless, most of the
experimental evidence today exists for plane-stress problems. Hence, the three-dimensional spectral
decomposition was extended (Theocaris and Sokolis, 1998) to encompass the equally important two-
dimensional equivalent, o�ering a possibility of characterization of the elastic properties under plane-
stress situations.

In this paper, the elastic strain energy density of thin transversely isotropic plates is analyzed into
autonomous components. Bearing in mind the consequential role undertaken by the total elastic strain
energy density or parts of it in the formulation of failure criteria for isotropic solids, the necessity of
obtaining analogous, more general types of decompositions of the strain energy is evident, for the
de®nition of the respective criteria, which will be valid for anisotropic bodies. Accordingly, based on the
geometrical features of the elliptic paraboloid failure surface, which was previously proven (Theocaris,
1987a, b; Theocaris and Philippidis, 1987) to be a convenient failure locus for a satisfactory description
of the complex modes of failure of anisotropic materials, and con®ning our attention to transversely
isotropic plates, it is shown that the elastic strain energy at the limit of failure is split into two energy
parts, derived from orthogonal states of stress in such a manner that each component of stress in either
energy part does not contribute to the other energy part. Furthermore, by spectrally expanding the
compliance tensor S, orthogonal states of stress are obtained, corresponding to distinct energy
components. Both decompositions of the total elastic strain energy, proposed in this paper, are energy
equivalent and advantageous, owing to the fact that they manifest similarities with the decomposition of
the strain energy of isotropic bodies into dilatational and distortional elements, respectively.

2. The elliptic paraboloid failure surface and the decomposition of the elastic strain energy density

Modern failure criteria originate from Hill's criterion (Hill, 1948), which, in turn, was based on von
Mises' initial de®nition of yielding and failure of anisotropic solids (von Mises, 1928). Nevertheless,
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Hill's criterion did not incorporate important universal phenomena of the mechanical behavior of
materials, such as the Bauschinger e�ect and others dependent on the strength di�erential e�ect. From
the old generation of criteria, only the Coulomb criterion took into consideration the strength
di�erential e�ect (Coulomb, 1773), by introducing the ®rst stress invariant into its expression, thus,
relating the dilatational and distortional types of strain energy, and realizing its contribution in the
failure modes of materials. Improvement to the criteria of anisotropic bodies was o�ered by Ho�man's
criterion, by adding the linear terms in the quadratic expression of Hill's criterion (Ho�man, 1967),
therefore, presenting an improved version of Hill's criterion, which exhibited the strength di�erential
e�ect.

Further improvement to the ®rst typical yield and failure criteria was o�ered by two basic criteria,
which were developed recently. These are the Tsai±Wu tensor failure polynomial (TFP) (Tsai and Wu,
1971) and the elliptic paraboloid failure surface (EPFS), which are based on Hill's criterion and its
modi®cation by Ho�man. Both are convenient for the description of the failure behavior of anisotropic
media, complying with energy balance considerations and basic physical laws. However, despite the
¯exibility and elegance of the TFP-criterion, this necessitates meticulous and delicate experiments, as
well as an extensive study based on Weibull's distribution theory, in order to determine appropriately
the characteristic parameters de®ning the failure locus. Oppositely, the EPFS-criterion serves as a superb
instrument for the precise evaluation of the e�ect of variation of one failure component on the values of
the remaining ones.

Initially, the EPFS-criterion was introduced (Theocaris, 1986, 1987c) for the de®nition of the failure
surface of isotropic materials, which exhibited the strength di�erential e�ect. This was de®ned by a
parameter R=sOC/sOT, where sOC and sOT are the yield stresses in compression and tension,
respectively, and the EPFS obtained the shape of a paraboloid of revolution surface. For orthotropic
media (Theocaris, 1989), three di�erent strength di�erential parameters were de®ned, R1=sC1/sT1,
R2=sC2/sT2, R3=sC3/sT3, with respect to six distinct strength parameters, three for tension and three
for compression along the principal strength axes of the body. Finally, for transversely isotropic media
with the s3-axis being the axis of symmetry, there were only two strength di�erential parameters R1=R2

and R3. Furthermore, it is worthwhile pointing out that the axis of symmetry of the EPFS for both
isotropic, transversely isotropic and orthotropic materials was parallel to the hydrostatic axis in the
stress space, apart from the fact that all failure surfaces were paraboloids.

The EPFS-criterion was exhaustively compared in Theocaris (1994), with all other well-known failure
tensor polynomial criteria. Moreover, the characteristics of the EPFS have been derived in previous
papers (Theocaris 1987a, b; Theocaris and Philippidis, 1987). However, it is appropriate to brie¯y state
these properties again here, since they constitute the basis for establishing the expressions of the strain
energy components at failure. Consider a transversely isotropic body with failure tensors Hij and hi
along the principal stress axes, where i, j= 1, 2, 3 and the 33-axis is presumed to be the strong axis of
the medium. The components of the failure tensors are expressed by:

Hii � 1

sTi
sCi

, Hij � 1

2
�Hkk ÿHii ÿHjj �, �1a�

hi � 1

sTi

ÿ 1

sCi

� �sCi
ÿ sTi

�Hii, �1b�

where the repeated index convention does not apply, and the sTi
and sCi

-stresses express the tension, T,
and compression, C, failure stresses in the i-direction. Then, the RHS of relations (1a) implies that the
o�-diagonal failure components Hij are interrelated with the diagonal ones, this being a major
advantage of the EPFS-criterion in comparison to all other FTP-criteria, in which the experimental
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evaluation of the o�-diagonal components presents insurmountable di�culties. Assuming, further, that
the principal stress axes coincide with the material principal strength axes, the failure surface is
expressed by (Theocaris, 1987a, c):

H11�s2
1 � s2

2 � �H33s2
3 ÿ �2H11 ÿH33�s1s2 ÿH33�s2s3 � s3s1� � h1�s1 � s2� � h3s3 � 1: �2�

The quadric surface, represented by relation (2), is an elliptic paraboloid surface, which is symmetric
with respect to the principal diagonal plane (s3, d12), containing the s3-axis and passing through the
bisector d12 of angle s1OÃs2. Fig. 1 exhibits the elliptic paraboloid failure surface, whose axis of
symmetry KO 'z ' is parallel to the Oz-hydrostatic axis in the principal stress space (s1, s2, s3). The
Cartesian reference system Oxyz is formed by rotation of the (s1, s2, s3)-system, so that the Ox-axis
becomes a bisector of the (s1, s2)-plane, the Oz-axis coincides with the hydrostatic axis, and the Oy-axis
forms a tri-orthogonal system. In addition, the Ox 'y 'z '-system is formed from the Oxyz-system by
translating the origin O to the new origin O ' by a distance y1. This distance y1 between the hydrostatic
axis and the axis of symmetry of the EPFS is given by:

y1 �
���
6
p

9H33
�h1 ÿ h3�: �3�

The cross-section of the EPFS by the principal plane (s1, s3) may be derived from relation (2), by
setting s2=0. This substitution yields (Theocaris, 1988a, b):

H11s2
1 �H33s2

33 ÿH33s1s3 � h1s1 � h3s3 � 1: �4�
Relation (4) indicates that the intersection of the EPFS by the principal stress plane (s1, s3) is an ellipse
(Fig. 2), whose center M has coordinates (s1m, s3m):

s1m � ÿ �2h1 � h3�
4H11 ÿH33

, �5a�

Fig. 1. Three-dimensional appearance of the elliptic paraboloid failure surface (EPFS) in the principal stress system (s1, s2, s3) and
the Cartesian system Ox 'y 'z ', where the O 'z '-axis is parallel to the hydrostatic axis Oz.
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s3m � ÿ�h1H33 � 2h3H11�
H33�4H11 ÿH33� : �5b�

Moreover, the angle lm of inclination of the polar radius OM is given by:

lm � tan ÿ1
�
h1H33 � 2h3H11

H33�2h1 � h3�
�
: �6�

The system of Cartesian coordinates (MS1, S3), to which this ellipse is central and symmetric, is de®ned
by angle y1:

y1 � 1

2
tan ÿ1

�
H33

H11 ÿH33

�
: �7�

In order to de®ne the principal semi-axes a1M and a3M of the elliptic intersection of the EPFS by the
principal plane (s1, s3), we need to evaluate the following quantities:

1. The determinant of the matrix of coe�cients A2 of the second-degree terms of relation (4):

A2 �

0BB@H33 ÿH33

2

ÿH33

2
H11

1CCA, �8�

Fig. 2. Intersection of the elliptic paraboloid failure surface (EPFS) by the (s1, s3) principal stress plane for a transversely isotropic

material.
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which gives

detA2 �
�
H11H33 ÿ H 2

33

4

�
: �9�

2. The determinant of the following matrix A3:

A3 �

0BBBBBBB@
H33 ÿH33

2

h3
2

ÿH33

2
H11

h1
2

h3
2

h1
2

ÿ1

1CCCCCCCA �10�

yielding

detA3 � ÿdetA2 ÿ 1
4 �H33h

2
1 �H11h

2
3 �H33h1h3�: �11�

3. The roots d1,2 of the characteristic equation:

d2 ÿ trA2d� detA2 � 0: �12�
These roots are expressed by:

d1,2 � 1
2f�H11 �H33�2��H11 ÿH33� 2 �H 2

33�1=2g: �13�

Then, the semi-axes a1M and a3M of the ellipse are given by:

�a1M, a3M� �
�

C

d1,2

�1=2

�14a�

where

C � ÿ detA3

detA2
, �14b�

and this concludes the description of the elliptic paraboloid failure locus for transversely isotropic
materials.

Consider now two unit vectors np and nn, which are normal and parallel to the projection of the
hydrostatic axis on the principal stress plane (s1, s3). These vectors are de®ned as follows (Fig. 3):

np �
�
ÿ 1���

2
p ,

1���
2
p

�T

, �15a�

nn �
�

1���
2
p ,

1���
2
p

�T

: �15b�

According to the classical analysis for anisotropic media (Lekhnitskii, 1963), the principal stress±strain
relations under plane stress conditions, s2=0, are given by:
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E1 � 1

ET

s1 ÿ nL

EL

s3, �16a�

E2 � ÿ nT

ET

s1 ÿ nL

EL

s3, �16b�

E3 � 1

EL

s3 ÿ nL

EL

s1, �16c�

where EL, ET, nL and nT are the elastic constants along the longitudinal, denoted by subscript `L', and
transverse, denoted by subscript `T', directions.

The projections of the stress vector sss along the unit vectors np and nn in the (s1, s3)-plane are readily
evaluated to be:

sssp � �sss � np�np �
�
s1 ÿ s3

2
, ÿ s1 ÿ s3

2

�T

, �17a�

sssn � �sss � nn�nn �
�
s1 � s3

2
,
s1 � s3

2

�T

: �17b�

In addition, the projections of the strain vector EEE along the unit vectors np and nn in the (s1, s3)-plane
are expressed by:

EEEp � �EEE � np�np �
�
ÿ s3

2

�
1� nL

EL

�
� s1

2

�
1

ET
� nL

EL

�
,
s3
2

�
1� nL

EL

�
ÿ s1

2

�
1

ET
� nL

EL

��T

, �18a�

Fig. 3. The unit vectors nn and np are parallel to the projections of the hydrostatic axis and its normal on the principal (s1, s3)
stress plane.
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EEEn � �EEE � nn�nn �
�
s3
2

�
1ÿ nL

EL

�
� s1

2

�
1

ET

ÿ nL

EL

�
,
s3
2

�
1ÿ nL

EL

�
� s1

2

�
1

ET

ÿ nL

EL

��T

: �18b�

The total elastic strain energy density 2 T�sss� is expressed by:

2T�sss� � sss � EEE � �sssp � sssn� � �EEEp � EEEn� � sssp � EEEp � sssn � EEEn, �19�
since sssp � EEEn�0 � sssn � EEEp:

Then, the two parallel and normal orthogonal components 2 Ti�sss� �sssi � EEEi, i = p, n into which the
total elastic strain energy is analyzed are expressed by:

2Tp�sss� � s2
1

2

�
1

ET

� nL

EL

�
� 1

2

�
1� nL

EL

�
s2
3 ÿ

1

2

�
1

ET

�
�
1� 2nL

EL

��
s1s3, �20a�

2Tn�sss� � �s1 � s3�
�
s3
2

�
1ÿ nL

EL

�
� s1

2

�
1

ET

ÿ nL

EL

��
: �20b�

Relations (20) assert that the elastic strain energy components are independent of the value of the
transverse Poisson's ratio nT, a fact which must be taken into account in the manufacture of thin plates
of a transversely isotropic medium.

3. Spectral decomposition of the elastic strain energy density

Consider the spectral decomposition of the compliance fourth-rank tensor S of a transversely
isotropic linear elastic plate. The stress sss and strain EEE second-rank tensors are referred to a Cartesian
coordinate system, adjusted along the principal material directions, with the 33-axis normal to the
isotropic, transverse plane. The eigenvalues lm, m = 1, . . . ,3 of the square matrix of rank three,
corresponding to tensor S, are given by (Theocaris and Sokolis, 1998):

l1 � 1

2EL

� 1

2ET

�
"�

1

2EL

ÿ 1

2ET

�2

� n2
L

E 2
L

#1=2

, �21a�

l2 � 1

2EL

� 1

2ET

ÿ
"�

1

2EL

ÿ 1

2ET

�2

� n2
L

E 2
L

#1=2

, �21b�

l3 � 1

2GL

: �21c�

Subscripts `T' and `L' in the engineering elastic constants of relations (21) denote the transverse
isotropic plane and the orthogonal, longitudinal plane, containing the axis of elastic symmetry.

The associated idempotent fourth-rank tensors Em, m = 1, . . . ,3 decompose spectrally the compliance
fourth-rank tensor S and the unit element I of the fourth-rank symmetric tensor space, via the following
relations:

S � l1E1 � l2E2 � l3E3, �22a�
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I � E1 � E2 � E3: �22b�
Secondly, the idempotent tensors Em satisfy the following set of equations:

Em � En � 0, m 6�n, �23a�

Em � Em � Em: �23b�
Besides, if the stress states sssm constitute the second-rank eigentensors of the compliance tensor S, they
need to satisfy the eigenvalue equation:

S � sssm � lmsssm, �24�
with index m varying between 1 and 3, and the eigenvalues lm being o�ered in terms of relations (21).
Stress eigentensors sssm are derived by the orthogonal projection of a second-rank symmetric tensor sss on
the subspaces of the second-rank symmetric tensor space produced by the idempotent tensors Em, as
follows:

sssm � Em � sss, m � 1, . . . , 3, �25�
where sss is the contracted stress tensor:

sss � �s1, s3, s13�T: �26�
According to relations (25), it is found that:

sss1 � �cos op�s1� � sin op�s3��� cos op, sin op, 0�T, �27a�

sss2 � �sin op�s1� ÿ cos op�s3��� sin op, ÿ cos op, 0�T, �27b�

sss3 � �0, 0, s13�T, �27c�
where op is referred to as the plane eigenangle and is de®ned according to the following formula:

tan 2op � ÿ2nL

EL

��
1

ET

ÿ 1

EL

�
: �28�

The sss1-eigenstate represents a superposition of a tension stress state in the 11-axis with a tension along
the in®nite symmetry 33-axis of the plate, whereas the sss2-eigenstate replaces the uniaxial tension by
uniaxial compression along the symmetry axis. Finally, the sss3-eigenstate is a simple shear stress state. In
addition, relations (27) imply that the stress eigenstates break down the generic stress tensor sss into three
orthogonal components sss1, sss2 and sss3: It should be taken into consideration that the components of
the sss1- and sss2-eigentensors (Fig. 4) are dependent upon the value of the plane eigenangle op, given by
relation (28), and the engineering elastic constants of the material, whereas the third eigentensor sss3 is
constant for the whole class of transversely isotropic media.

In addition, the total elastic strain energy density may be decomposed in three distinct energy
components, each one associated with the respective stress eigentensor:

2T�sss� � T1�sss� � T2�sss� � T3�sss�, �29�
where
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Tm�sss� � lm�sssm � sssm�, m � 1, . . . , 3: �30�
Thus, the following expressions are obtained for the strain-energy density constituents of a transversely
isotropic plate:

T1�sss� �

8<: 1

2EL

� 1

2ET

�
"�

1

2EL

ÿ 1

2ET

�2

� n2
L

E 2
L

#1=2
9=;�cos op�s1� � sin op�s3��2, �31a�

T2�sss� �

8<: 1

2EL

� 1

2ET

ÿ
"�

1

2EL

ÿ 1

2ET

�2

� n2
L

E 2
L

#1=2
9=;�sin op�s1� ÿ cos op�s3��2, �31b�

T3�sss� � 1

GL

�s13�2: �31c�

Relations (31) state that the two strain energy components T1�sss� and T2�sss� depend upon the value of
the plane eigenangle op, given by relation (28), and correspond to a mixture of distortional and
voluminal energy. The third energy component T3�sss� is independent of the value of the plane eigenangle
op, and is solely associated with distortional energy.

4. Orthogonal components of the elastic strain energy density in the principal stress plane

Relations (20) and (31), which are orthonormal in the sense of their scalar products, express the strain
energy density components obtained from the two decompositions of the total strain energy proposed in
this paper. Relations (20) express the components of the elastic strain energy density attained from
orthogonal stresses and strains along the projection of the hydrostatic axis and its normal on the
principal stress plane (s1, s3). Relations (31) yield the strain energy parts acquired from the more
general splitting of the strain energy, based on the spectral decomposition of the compliance tensor S
for transversely isotropic plates. Direct inspection of Eqs. (20) and (31) reveals that the energy density
elements are expressed in terms of stresses s1 and s3 of a generic point on the stress plane. If this point

Fig. 4. Geometric representation of the eigentensors sss1 and sss2 of the compliance fourth-rank tensor S for transversely isotropic

plates on the principal stress plane (s1, s3).
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is taken on the EPFS, it is essential that the stress coordinates are de®ned in terms of relation (4), which
expresses the de®ning equation of the EPFS on the (s1, s3)-plane.

Taking advantage of the geometrical features of the EPFS, a direct analysis of the stress vector sssFn

corresponding to an arbitrary point Fn of the failure surface is utilized, by splitting it into three
components, namely (Fig. 5):

sssFn
� sssOO 0 � sssO 0F � sssFFn

, �32�
in which the stress vectors sssOO 0 and sssFFn

are parallel to the deviatoric plane (s1+s2+s3)=0, whereas
the sssO 0F-vector is parallel to the hydrostatic axis z. Moreover, the sssOO 0-vector is independent of the
position of point Fn and depends only on the characteristics of the EPFS.

Nevertheless, the splitting of the stress vector sssFn
described above is convenient for three-dimensional

loading of the structure. For the case of thin plates of a transversely isotropic medium, attention must
be restricted to the principal stress plane (s1, s3). In this case, the stress vector, lying on the elliptic
intersection of the EPFS by the principal plane (s1, s3), is analyzed into three constituents, these being
the projections of the three vector components sssOO 0 , sssO 0F and sssFFn

on the (s1, s3)-plane, that is sssOO 00 ,
sssO 00F 00 and sssF 00Fn

: Therefore, points O ' and F are projected to points O0 and F0 on the principal stress
plane (s1, s3) (Fig. 3). In addition, stresses sssO 00F 00 and sssF 00Fn

are denoted by sp and ap, respectively.
Consider ®rst the strain energy density 2 T�sssOO 00 �, corresponding to stress sssOO 00 and strain

EEEOO 00 -vectors (Fig. 6). The components of the sssOO 00-vector are expressed by:

s1 � 2�h3 ÿ h1�
9H33

, s3 � 2�h1 ÿ h3�
9H33

: �33�

Fig. 5. The splitting of the stress vector sssFn
of a generic point on the EPFS by the three components sssOO 0 , sssO 0F and sssFFn

:
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Then, the parallel, 2 Tp�sssOO 00 �, and normal, 2 Tn�sssOO 00 �, parts of the total elastic strain energy density,
de®ned by relations (20), are readily determined to be:

2Tp�sssOO 00 � � 4

81

�
1

ET
�
�
1� 2nL

EL

���
h1 ÿ h3
H33

�2

, �34a�

2Tn�sssOO 00 � � 0: �34b�
Moreover, consider the elastic strain energy density 2 T�sssOF 00 �, performed by the stress vector sssOF 00

(Fig. 6). The components of the sssOF 00-vector are de®ned as:

s1 � 2�h3 ÿ h1�
9H33

� sp���
2
p , s3 � 2�h1 ÿ h3�

9H33
� sp���

2
p : �35�

The parallel, 2 Tp�sssOF 00 �, and normal, 2 Tn�sssOF 00 �, components of the elastic strain energy density are the
expressed as follows

2Tp�sssOF 00 � � 2Tp�sssOO 00 � �
���
2
p

9

�
1

EL

ÿ 1

ET

��
h1 ÿ h3
H33

�
sp, �36a�

2Tn�sssOF 00 � � 1

2

�
1

ET

�
�
1ÿ 2nL

EL

��
s2

p �
���
2
p

9

�
1

EL

ÿ 1

ET

��
h1 ÿ h3
H33

�
sp: �36b�

The ®rst RHS term, 2 Tp�sssOO 00 �, of relation (36a) is equal to the strain energy performed in loading the
structure by stress sssOO 00 and the strain component �EEEOO 00 �p, whereas the second term, denoted by
2 Tp�sssO 00F 00 �, equals the strain energy produced by stress sssOO 00 and the component of strain �EEEO 00F 00 �p: In
addition, the ®rst RHS term of relation (36b) equals the strain energy created by stress sssO 00F 00 and the
component of strain �EEEOO 00 �n, and the second term represents the strain energy produced by hydrostatic
stress sssO 00F 00 and the component of strain �EEEO 00F 00 �n (Fig. 6).

Fig. 6. The vector analysis of the ®rst loading path on the principal stress plane (s1, s3).
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Finally, regarding the elastic strain energy density 2 T�sssFn
�, performed by the stress vector sssFn

(Fig. 6), the components of the sssFn
-vector are given by:

s1 � 2�h3 ÿ h1�
9H33

� sp���
2
p ÿ ap���

2
p , s3 � 2�h1 ÿ h3�

9H33
� sp���

2
p � ap���

2
p : �37�

The parallel, Tp�sssFn
�, and normal, Tn�sssFn

�, constituents of the elastic strain energy density are then
found to be:

2Tp�sssFn
� � 2Tp�sssOO 00 � � 2Tp�sssO 00F 00 � � 1

2

�
1

ET

�
�
1� 2nL

EL

��
a2

p �
2
���
2
p

9

�
1

ET

�
�
1� 2nL

EL

��

�
�
h1 ÿ h3
H33

�
ap � 1

2

�
1

EL

ÿ 1

ET

�
spap, �38a�

2Tn�sssFn
� � 2Tn�sssO 00F 00 � � 1

2

�
1

EL

ÿ 1

ET

�
spap, �38b�

where Tp�sssOO 00 �, Tp�sssO 00F 00 �, and Tn�sssO 00F 00 � are de®ned in relations (36). The third term in relation (38a)
represents the strain energy produced by stress sssF 00Fn

and the component of strain �EEEF 00Fn
�p, whereas the

fourth term is equal to the strain energy performed by stress sssOO 00 and strain component �EEEF 00Fn
�p, as

well as the strain energy performed by stress sssF 00Fn
and the strain component �EEEOO 00 �p, and the ®fth term

is performed by stress sssF 00Fn
and the strain component �EEEO 00F 00 �p: Finally, the second term in relation

(38b) denotes the strain energy produced by stress sssO 00F 00 and the component of strain �EEEF 00Fn
�n (Fig. 6).

In Section 3 of this paper, the spectral decomposition of the compliance S fourth-rank tensor for
transversely isotropic plates was shown to propose a decomposition of the elastic strain energy density
into two constituents, T1�sss� and T2�sss�, corresponding to the two stress eigenstates sss1 and sss2, of the
compliance tensor S on the principal stress plane (s1, s3). It is of interest, at this point, to determine the
strain energy components corresponding to the spectral decomposition of the elastic strain energy and
compare the results with the ones obtained above, for the decomposition of strain energy described in
Section 2.

Consider ®rst the spectral decomposition of the strain energy 2 T�sssOO 00 �, corresponding to stress sssOO 00

(Fig. 7), de®ned by relations (33). The components T1�sssOO 00 � and T2�sssOO 00 � of the elastic strain energy
density, due to the two stress eigenstates sss1 and sss2, are expressed as follows:

T1�sssOO 00 � � 4

81G

�
h1 ÿ h3
H33

�2

��G2 � AG� BG� 2nLAB� 2nLB
2 � 2nLBG�, �39a�

T2�sssOO 00 � � 4

81G

�
h1 ÿ h3
H33

�2

��ÿG2 � AG� BGÿ 2nLABÿ 2nLB
2 � 2nLBG�, �39b�

where quantities A, B and G are de®ned by:

A � 1

2ET

, B � 1

2EL

, G �
"�

1

2ET

ÿ 1

2EL

�2

� n2
L

E 2
L

#1=2

� ��Aÿ B �2 � 4n2
LB

2�1=2: �40�

It is thus concluded that the sss1- and sss2-eigenstates contribute to the work done in loading the structure
from the origin O to point O0, via point M0 along the directions of the sss1- and sss2-eigenvectors (Fig. 7).
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Also consider the decomposition of the elastic strain energy density 2 T�sssO 00F 00 �, which is performed
by stress sssO 00F 00 (Fig. 7), de®ned according to relations (35). The components T1�sssO 00F 00 � and T2�sssO 00F 00 �
of the elastic strain energy density are expressed, in terms of quantities A, B and G, by:

T1�sssOF 00 � � T1�sssOO 00 � �
s2

p

2G
� �G2 � AG� BGÿ 2nLABÿ 2nLB

2 ÿ 2nLBG�

�
�������
2sp

2
p
9G

�
h1 ÿ h3
H33

�
� �B 2 ÿ A2 ÿ AG� BG�, �41a�

T2�sssOF 00 � � T2�sssOO 00 � �
s2

p

2G
� �ÿG2 � AG� BG� 2nLAB� 2nLB

2 ÿ 2nLBG�

�
�������
2sp

2
p
9G

�
h1 ÿ h3
H33

�
� �A 2 ÿ B 2 ÿ AG� BG�: �41b�

The ®rst RHS terms of relations (41) correspond to 2 T�sssOO 00 �, whereas the second and third terms
express the strain energy density 2 T�sssO 00F 00 �: Thus, the sss1- and sss2-eigenstates contribute to the work
done in loading the structure from point O0 to point F0, via point K0 along the direction of the sss1- and
sss2-eigenvectors (Fig. 7).

Consider ®nally, the spectral decomposition of the elastic strain energy 2 T�sssF 00Fn
�, which is performed

by stress sssF 00Fn
(Fig. 7), expressed by relations (37). The components T1�sssF 00Fn

� and T2�sssF 00Fn
� of the

elastic strain energy density, when expressed in terms of quantities A, B and G, are given by:

Fig. 7. The vector analysis of the second and third loading paths on the principal stress plane (s1, s3) along the directions of vec-

tors sss1 and sss2, which constitute the stress eigentensors of the compliance tensor S for transversely isotropic plates.
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T1�sssFn
� � T1�sssOO 00 � � T1�sssO 00F 00 � � spap

G
� �B 2 ÿ A2 ÿ AG� BG�

�
"
a2

p

2G
� 2

���
2
p

ap

9G

�
h1 ÿ h3
H33

�#
� �G2 � AG� BG� 2nLAB� 2nLB

2 � 2nLBG�,
�42a�

T2�sssFn
� � T2�sssOO 00 � � T1�sssO 00F 00 � � spap

G
� �ÿB 2 � A2 ÿ AG� BG�

�
"
a2

p

2G
� 2

���
2
p

ap

9G

�
h1 ÿ h3
H33

�#
� �ÿG2 � AG� BGÿ 2nLAB� 2nLB

2 � 2nLBG�:
�42b�

It is readily noted that the ®rst RHS terms of relations (42) denote 2 T�sssOO 00 �, the second terms indicate
the strain energy 2 T�sssO 00F 00 �, and ®nally the third and fourth terms are associated with the strain energy
2 T�sssF 00Fn

�: Concluding, the sss1- and sss2-eigenstates contribute to the work done in loading the structure
from point F0 to point Fn, via point L0, along the directions of the sss1- and sss2-eigenvectors (Fig. 7).

5. Discussion

In this paper, two ways were suggested for the partition of the elastic strain energy density of
transversely isotropic plates into distinct elements. Utilizing the geometrical attributes of the elliptic
paraboloid failure surface, which has been proven to be a suitable failure locus for characterizing
satisfactorily the complex modes of failure of anisotropic media, and restraining our attention to thin
plates of a transversely isotropic medium, it was proven that the total elastic strain energy at the limit of
failure may be decomposed into two non-interacting strain energy components, Tp�sss� and Tn�sss�,
acquired from orthogonal states of stress.

The two components, Tp�sss� and Tn�sss�, of the strain energy derived are orthogonal, since their scalar
products lie the ®rst normal and the second parallel to the hydrostatic axis. However, it should be made
clear that, contrariwise to the case of isotropic media, these strain energies do not correspond to distinct
types of energy, such as the distortional and dilatational types. Nevertheless, these ®ndings are in
accordance with remarks made by Rychlewski on purely theoretical grounds.

Moreover, applying the spectral decomposition principle on the compliance fourth-rank tensor S,
suitable for transversely isotropic plates, the stress sss second-rank tensor was analyzed in energy
orthogonal states. Thus, the stress tensor sss on the principal stress plane (s1, s3) was speci®ed altogether
by two eigentensors sss1 and sss2, and these energy orthogonal stress states were proven to partition
directly the elastic strain energy density in distinct constituents, T1�sss� and T2�sss�: Moreover, it was
shown that the T1�sss�- and T2�sss�-strain energies are associated with both shape distortions and
alterations in volume of the medium, and depend on the value of the plane eigenangle op, which,
consequently, determines the type of strain energy stored. In the specialized case when the plane
eigenangle op equals either 458 or 1358, as in the case of isotropic media, the strain energy components
become the distortional and dilatational types of energy. However, in the general case, the
decomposition of the elastic potential, which is valid for the isotropic medium, is not valid for the
transversely isotropic one.

On that account, the generalization of the decomposition of the total elastic strain energy density of
isotropic media and cubic crystals into dilatational and distortional components seems unrealizable for
the class of transversely isotropic media, because the spherical tensor 1 is not an eigentensor of the
compliance tensor S. Accordingly, the generalization of the Huber±von Mises±Hencky criterion in order
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to hold for transversely isotropic plates and the introduction of the distortional energy as the critical
failure quantity seems unfeasible.

Secondly, two loading paths were considered in loading the structure from the origin O to an
arbitrary point Fn of the failure locus on the principal stress plane (s1, s3). However, it should be noted
that the total energy expenditure is irrespective of the loading path, according to the principle of
conservation of energy. The ®rst loading path was a zigzag path (Fig. 6) along the directions parallel to
the hydrostatic axis and its normal de®ned on the principal stress plane (s1, s3), passing through points
O0 and F0, via the following routes:

OO 004O 00F 004F 00Fn: �43�

Loading the plate from O to O0 along the ®rst loading path, the energy expended is independent of the
position of point Fn, being the same for all points of the EPFS, thus, re¯ecting the extent of anisotropy
of the material. In addition, the OO0, O0F0, F0Fn routes, involved in the ®rst path, introduce two strain
components, one in the normal, `n', and one in the parallel `p', direction. Therefore, the total elastic
strain energy density 2 T�sssFn

� of the ®rst path is equal to the sum of nine scalar products sssi � EEEi,
i={p, n}, and may be decomposed into two orthogonal components, Tn�sssFn

� and Tp�sssFn
�: The normal

component, Tn�sssFn
�, refers to scalar products of stress and strain parallel to the hydrostatic axis,

whereas the parallel component, Tp�sssFn
�, refers to scalar products normal to the hydrostatic axis, so

that:

2Tp�sssFn
� � sssOO 00 � ��EEEOO 00 �p � �EEEO 00F 00 �p � �EEEF 00Fn

�p� � sssF 00Fn
� ��EEEOO 00 �p � �EEEO 00F 00 �p � �EEEF 00Fn

�p�, �44a�

2Tn�sssFn
� � sssO 00F 00 � ��EEEOO 00 �n � �EEEO 00F 00 �n � �EEEF 00Fn

�n�: �44b�

As a result, this splitting of the elastic strain energy density is a very favorable one, because the two
strain energy components do not interfere. However, Tn�sssFn

� and Tp�sssFn
� are mixed types of energy,

that is both dilatational and distortional, and do not correspond to distinct types of energy.
The second loading path (Fig. 7) was equivalent to the ®rst one, crossing points O0 and F0, but along

the directions of the sss1- and sss2-stress eigenstates. The latter were de®ned according to the spectral
decomposition of the compliance S fourth-rank tensor for transversely isotropic plates. Thus, the second
path comprised of the following routes:

OM 004M 00O 004O 00K 004K 00F 004F 00L 004L 00Fn: �45�

The total elastic strain energy density 2 T�sssFn
� of the second path is equal to the sum of the nineteen

scalar products sssi � EEEi, i={1, 2}, and may be split into two orthogonal components, T1�sssFn
� and

T2�sssFn
�: Component T1�sssFn

� refers to scalar products of stress and strain in the direction of the sss1-
stress eigenstate, whereas component T2�sssFn

� refers to scalar products in the direction of the sss2-stress
eigenstate, namely:

T1�sssFn
� � �sssOM 00 �1 � ��EEEOM 00 �1 � �EEEO 00K 00 �1 � �EEEF 00L 00 �1� � �sssO 00K 00 �1 � ��EEEOM 00 �1 � �EEEO 00K 00 �1
� �EEEF 00L 00 �1� � �sssF 00L 00 �1 � ��EEEOM 00 �1 � �EEEO 00K 00 �1 � �EEEF 00L 00 �1�, �46a�
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T2�sssFn
� � �sssM 00O 00 �2 � ��EEEM 00O 00 �2 � �EEEK 00F 00 �2 � �EEEL 00Fn

�2� � �sssK 00F 00 �2 � ��EEEM 00O 00 �2 � �EEEK 00F 00 �2
� �EL 00Fn

�2� � �sssL 00Fn
�2 � ��EEEM 00O 00 �2 � �EEEK 00F 00 �2 � �EEEL 00Fn

�2�, �46b�

in which the subscripts 1 and 2 represent the sss1- and sss2-eigenstates.
Finally, a third loading path may be considered (Fig. 7), which consists of two routes in the directions

of the stress-eigenstates sss1 and sss2 of the transversely isotropic plate, namely:

OQ 004Q 00Fn: �47�
The elastic strain energy 2 T�sssFn

� of the third path is equal to the sum of two scalar products sssi � EEEi,
i={1, 2}. Thus, the strain energy in the principal stress plane (s1, s3) may be resolved in two
components, T1�sssFn

� and T2�sssFn
�, each one associated with one of the two stress eigenstates:

T1�sssFn
� � �sssOQ 00 �1 � �EEEOQ 00 �1, �48a�

T2�sssFn
� � �sssQ 00Fn

�2 � �EEEQ 00Fn
�2, �48b�

where the subscripts 1 and 2 denote the sss1- and sss2-states of stress.
Concluding, the last loading path is the most appropriate one in comparison to the other two, since

the computation of the strain energy density of any point Fn on the failure locus involves less
computations, that is only two scalar products compared to nine and eighteen scalar products involved
in the ®rst and second paths.

At last, it may be stated that for a thin plate of a transversely isotropic material, whose principal
stress axes coincide with the principal material directions of the medium, it is always possible to
decompose the total elastic strain energy density into two orthogonal components, in the sense of the
scalar products of their associated stress states. Furthermore, the decomposition of the strain energy is
advantageous, based on the fact that the two strain energy parts are non-interacting, such that one does
not interfere with the other.
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